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1. In order to explain certain laws governing the propagation of short
acoustlc waves in cristals, polycristalline metals and high polymers,it is
essential to take account of the discrete nature of their structure, con-
sisting as 1t does of sepatéte partlcles held together by complex forces
of interaction. These particles may be individual molecules, individual
crystals in polycrystalline metals, etc. The essential difference between
the continuous medium usually consldered in the theory of elasticity and the
real system of separate particles lles in the following. The displacement of
particles in a continuous medium can be specified by & vector field u, and
a small rotation, which when W 1s small may be found from the formula

@O =1rotu (1.1)

If we treat the material as a system of discrete particles the displace-
ment of their centers of gravity can be defined by a vector field W , and
a small rotation about the center of gravity by a vector fileld QD, which is
kinematically independent of W .

Furthermore, in the theory of & continuous medium the action of the medium
on a small element isolated from it is determined by the stresses, or what
amounts to the same, by the forces acting on its faces, and the moment 1s
calculated in terms of these forces., However, if we treat a medium as a
system of discrete partlcles, the action on one particle from its neighboring
particles 1s determined by independent forces and moments.

In what follows we shall approach the study of the behavior of a medium
with a discrete structure on the basis of the theory of a continuous medium.
In order to avold the above differences between the classical contlnuous
medium and the system of discrete particles we assume the contlnuous medlum
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Pundamental equations of the theory of asysmetric elasticity 4gr

to posses 8 number of properties which at first may appear somewhat unusual.

We define small displacements of particles in the continuous medium by a
vector field W and a small rotation of these particles by a vector fleld
(D, which is independent of u . The state of stress at any point in the
continuous medium will be defined by the stress diadic¢ ¢ and the diadic of
couple-stresses 4 . The elements of the stress dladic are the forces acting
on the unit areas of the appropriate sections within the body. The elements
of the diadic of couple-stresses are the moments acting on unit areas of the
same sections. Body forces at any point in the medium will be specified by
the force vector X and the body-moment vector ¢

It is of importance in the subsequent theory to make the assumption that
the surface and body forces do work only in the virtual displacements ﬁu,
and that the surface and body moments do work only in the virtual displace-
ments §. A similar approach to these problems may be found in [1 to T].
However, in & nlmber of works [2 to 5] the kinematic hypothesis (1.1) 1s
retained side by side with the introduction of couple-stresses,

2, Let us isoclate from the medium & volume ¥ having a surface area S.
In accordance with the above, at every puint on the surface § the action
of the part of the medium situated outside § on the part inside § 1is
given by the stress vector r, and the vector of couple~stresses 4y, ; at
every point in the volume the body forces and moments have intensities K
and ¢ respectively.

For the isolated volume of the medium to be in equilibrium 1t 1s necessary
and sufficient for the following conditlons to be satisfilead:

Rends+SKaW=o 2.1)

8 v
\(rmn+p,.)ds+%(rxx+c)dv=o 2.2)
s v

We note that the following relations hold for the vectors of surface
loading 1, and u, [4 and 8]:

T, = D%, Bn = D:p (2.3)

where n 1s the unit normal te the surface S , whereas ¢ and 4 are the
diadics of stresses and couple-stresses.

Substituting (2.3) into (2.1) and (2.2) and transforming the surface integ-
rals by the Gauss-Ostrogradskil formula, we obtain

iend3+§,KdV=§n.eds+$’KW=§’(V-1+K)W=0 (2.4)
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S(rxlvn%—p,n) dS»{—% (r XK +¢)dV = Sn-(—eXr+p) ds +
5 v g
+§ (rxK + ¢ dV:% [V (— X1 +p) + rxK + eldV = 0 (2.5)
v v
where <Y/ represents the Hamilton differential operator 7 = J / dr. Hence,

since the volume ¥ 1is arbltrary, we obtain the differential equations of
equilibrium

Ver + K =0 (2.6)
Ve(—sXr4+p)+rxK+e=0 (2.7
In order to simplify (2.7) we use the formula [8]
Ve(r X 1) = (Veq) X T — %x (2.8)
where 71, 1s the vector of the diadic r . We recall that we can obtain this

by vectorially muitiplying the left-hand factors of -the diadic by the right-
hand, and adding the results.

If we substitute (2.8) into (2.7) we obtain

rX(vet+ K)+vp+rx+e=0 (2.9)
which, on the basis of (2.6) can be considerably simplified to become
JepF+tcte=0 (2.10)

Equations (2.6) and (2.10) are the required equations of equilibrium. Note
that the stress diadlc ¢ 1s asymmetrical since, from (2.10), 1ts vector 1is
not zero. This 1is the explanation of the title — the theory of asymmetric
elasticity [2].

5. In order to find the relation between the kinematic quantities u and
(@ and the force quantities =« and | we use the principle of of virtual
displacements. Assuming the existence of potential energy of elastlic defor-
mation of the medium, the density of which, UJ , depends on the fleld of
small displacements u and the field of rotations (D, we have

&(‘:n-éu + o 8®) dS + i (K-8u + ¢-8® — 8U)dV = 0 (3.1)
8 v
Here Ou 1s a field of virtual displacements of particles within the
medium and 3@ 1s a fleld of virtual particle rotations. Substituting (2.3)
into (3.1) and transforming the surface integral into a volume integral, we
obtain
% [Ve(x -du 4 p-0®@) + K-8u + c- 8@ — 8U1dV = 0 (3.2)

A%
Since the volume [ 1is arbitrary we can set the expression under the

integral in (3.2) equal to zero, from which we can find the varliation in the
density of potential energy
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U = 7+ (x+du + p-8®) + K-3u + ¢. 0@ 3.3

Further, we can make use of the formulas
7 «(%+8u) = (g+%)+du + x..dyu* (3-4)
Ve (10 30) = (7-p)-0@ 4 p.-SyD* (3.9

The second term in the right-hand side of (3.4} is the double scalar pro-
duct of the diatics ¢ and Oyu®*. In such a multiplication the right- and
left-hand factors respectively of the disdics of the c¢ofactors multlply sca-
larly. Substituting (3.4) into {3.3) we obtain

8U = (y-n+ K)edu + (g-p + )@ + - dyu* + p.d90* (3.6)
Making use of the equllibrium equations we can reduce this expression to
the form

U = w15 - 0D - %o o S7u* 4 po o SyD* (3.7
Corresponding to the vector ¢, we introduce an antisymmetric diadic 4,
whose vector is egual to ., A direct check shows that {i}"*‘ is defined by

the formulsa
OF = —~,Ix® (3.8)
where ] 4s the unilt diadic.

By definitiun we have

Ot =0 (3.9)

Similarly, we can establish the antisymmetric component of the stress
diadic from the value of w, :

= Y Ix g (3.10)
Further, & direct check shows that the following relation holds
Ty 3D = — 2¢% 50 = — 2¢.. 804 (3.11)
Substituting (3.11) into (3.7) and introducing the notation
A = Tu— 204, M=v® (3.12)
we can write the variation of potential energy in the form
8U = =..8A* 4 p..0M* (3.13)

It follows that the specific potential energy of small deformations may
be expressed as a function of the dladics A and N

U=U(AM (3.14)
The variation of this is
ou .U
MJU:BA ..6A*+5M~--6M* (3ﬁ15)
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Comparing (3.15) and (3.13), we arrive at the general expression for the
law of elastic deformation
oU __9u

p= (3.16)

=5 M

From now on we shall confine our attention to small deformations in an
isotropic medium with mirror symmetry of its properties. Since the medium
1s isotropic the potential energy must depend only on the invariants of the
diadics A and M . But since the deformations are small it is sufficient
to retain in the potential energy only second-order terms, and assume that
first-order terms are eliminated by an appropriate choice of the reference
origin of the displacements wu and rotations (. Therefore, in deriving
an expression for the density of potential energy, of the six invariants of
both diadics A and M , we can use only the first and the second scalar
invariants and vector invarlants. Note that the products of the first sca-
lar or vector invarlants of different dladics cannot appear in the expression
for U , since the diadic A is polar and the diadic M 1s axial,

Thus the specific potential energy of the medium may be written in the

form 1 A ,s s S a8
U= - A% AS 4+ pAS. A5 —aA*. A% 4
+%%Ms..u..MS_;_TMS..MS_GMA..MA (3147)

where the index § 1indicates symmetric components of diadics and the index
A indicates antisymmetric components. The coefficlents \, u, a, B, y and
e are the six elastlc characteristics of the isotroplc medium. We see that
in Expression (3.17) they are multiplied by linearly independent invariants
of the diadics A and M.

Substituting (3.17) into (3.16), we obtain the law of small elastic defor-
mations equivalent to the usual Hooke's law

© = MI.«AS + 2uA5 + 22A4 (3.18)

p = BIL- - M5 4 2¢M® 4 2eM* (3.19)

%, Equations (2.6), (2.10), (3.12), (3.18) and (3.19) constitute the
complete system of equations of the linear theory of elasticity, which takes
into account rotational interaction between particles. For certain values
of the parameter o this system can be reduced to the classlcal equations
of the theory of elasticity and the equations of the theory of couple-stresses

consldered in [2 tc 5].

For instance, it follows from (3.18) that if g = O the stress diadic
becomes symmetrical, and by virtue of (3.12) assumes the form

£ = AIvV-u + 2p (Vu)® (4.1)
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Equations (4#.1) and (2.6) form a system of equations of the classical
theory of elastleity [9], in which ) &and u are the usual Lamé parameters.
In this case Equations {3.19) and (2.10) comprise an independent system for
the determination of the particle rotations.

Consider now the case when g ~ «» . 8ince the stresses must be finite,
we have

lim 2aA® = =4, lim A*=0 (4.2)

R->00 a@

where TA 1s an antisymmetric diladic.

It follows from the second relatlon of (4.2) that

lim AXA = 0
X~ O0
which, on the basis of (3.12), gives
(Dzl/zvxu (43)

Substituting (3.12) and {%.3) into (3.18) and (3.19), we obtain
t = Mveu+ 2p(vu)® + 14

g =1 (Vv xu)® + 8(Vqu)A=T—;8Vqu+T;8'(7xuv (4.4)

Equations (2.6), (2.10) and (4.4) have been studied in [3 to 5].

The system of equations (2.6), (2.10), (3.12), {3.18) and (3.19) must be
provided with boundary conditions. If these are force conditions then sur-
face loads n « ¢ and n + u must be specified on the surface of the elas.
tic body, when n 1s the unit normal to the surface, If the condltions are
kinematic, displacements uw and rotations (D must be specified on the sur-
face., If boundary conditions and body forces K and ¢ are specified and
the denslity of potentlal energy U 1s a positlve definite quadratic iorm,
then the solution of the above system of equations is unique. This theorem

may be proved for the present case in the same way as in the calssical theory
of elastlecity.

Substituting {3.18), (3.19) and {3.12) into the equilibrium equations
{(2.6) and (2.10), we obtain eguations in the displacements W and rotations
@ analogous to the Lamé equations

A+20)VVeu—(p+a)Vx(Vxu)4+2aVxD+ K =0
B+2)VVD—(y+ & Vx(Vx®)+ 2aV xu— 4a® + e =0 (4.5)
In the derivation of these equations the following expressions for the

symmetric and antisymmetric components of the dladics A and M and for the
vector invariant of the diadic s were used.
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A® =1y (Vu—uv) + uv = — oI x (¥ x u) 4+ uy
M5 = — 1, Ix (v x D)+ OV
A* = —1flx A = =1 Tx (V xu—20) (4.6)

M* = — 1,1 x (V x D)
T, = 207, = 20 (V xu— 20)

In addition, the elastic characteristics A, u,..., € were assumed %o be
constants,

5. Let us consider the propagation of waves in an infinite dynamically
isotropic elastic medium. In this case, for the body forces in Equations
(4.5) we take the inertia forces

d%u . 0D

K:—Pgﬁ, C= =] (5.1)

Here p 1s the density of the medium and 4 1s a speclal dynamic pro-
perty of the medium equal to the product of the moment of inertia of & par-
ticle about an axis passing through i1ts center of gravity and the number of
particles per unit volume. Substituting (5.1) into (4.5), we find the dynamic
equatlon of the medium

o

A+ 20)VVu—(p + 0 Vx(Vxu)4+ 20V x®—p 75 =0
%D (5.2)
B+ 27)VV®— (7 + &V (VxD) 4 20V xu — 4ol — ] 57 =0
We express the solution to this system in the form
u=yve-+vxH, v-H=0 (5.3)
® =Y+ @y, V@ =0
Substitution of (5.3) into (5.2) ylelds
9% a2H
V[(’~+29)V2<P—95§]+V>< [(u+ a)v2H+2a®1~pW] =0
. 92
v [(B + 27) VA — bop — a—;'f] + [(’l’ + &) V0, — 207*H — 5.4

. 92>
—40@1—;?!?1]:0

We see that the dynamic equations of the medium wlli be satisfied com-
pletely if @, , H and @, satisfy Equations

A+ 2V —p22=0, @+ 2V —dop—jGE=0 (55)
(® + o) V*H + 200, —pZ8 _ 0 (5.6)

(1 + &) V', — 2a9°H — ba®, — j 53 = 0 (5.7)
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The first of Equations (5.5) determines the behavior of an expansion wave
in the medium and the second, & rotation wave in which the particles undergo
rotation but not translation. Equations (5.6) and (5.7) define distortion
waves. If we elimlnate the vector (D, from these equations, we obtain a
single equation for the distortion wave

{[(T + &) V: — ba — ] 7;?;] [(}L + a) V2 —p%] + 4a2V2} H=0 (5.8)

Let us consider each of the waves separately. We shall confine our
attention to plane waves, propagating, say, along the x-axis. We assume

@ = Aeiila-ct) = AgiGx-ot) (5.9)

Here 4 1s the wave amplitude, £ the wave number, ¢ the phase velocity
and ¢ the frequency of oscillations of particles in the wave. We substi-
tute (5.9) into the first of Equations (5.5) to find the phase velocity of
the wave

== &ifpﬂ (5.10)

The same result is obtained in the classical theory of elasticity.

We now substitute a solution of the type (5.9) into the second of Equa-
tions (5.5) to find the relation between the phase velocity and the wave
frequency w . We obtain

2 w2cs? B+2y
g (et
0 — 0y

4
m*zz_]i‘i) (5.41)

,

It follows from (5.11) that a travelling rotation wave can exist only at
frequencles higher than w, . As w - = the phase veloclty tends to ¢4 .

In order to investigate the behavlior of distortion waves, we set
H = Beittct) = Bei(Gx-ot) (5.12)

where B 1s a constant vector which defines the direction and intensity of
motion of the particles. Substituting (5.12) into (5.8) we obtain the fol-
lowing equation for the square of the wave number:

esea® (B)° + [04°cs" — 0% (¢® + ¢,7)] (BF) — 0° (0,* — 0%) = 0 (5.13)

where

022 =t s 032 = bto , 642 =1 e (.0*2 = % (514)

p P
The discriminant of equation (5.13) may be written as
D = [0® (c3® — €,) — 0,%¢%)° + 40%0,.%¢,% (c3° — ¢5?) (5.15)

It follows that it is positive, and therefore for any w Equation (5.13)
has two different real roots &2, By means of Vieta's theorem it can easily
be proved that for w < w, Equation (5.13) has one positive root e?, and



504 V.A. Fal'mov

for w > @, both roots are positive. Consequently, for w < g, there exists
one travelling distortion wave and for o > we there exist two such waves,
For small frequencies we have the fol~
° lowing approximate value for the posi~
\ tive root of Equation (5,13):

| \ P w*
\\\‘\ g’::f;;; {5,16)
i £
0]! \“‘-~ We see from,this that for low fre-
‘nﬁéki_ S N — e quencles the phase velo¢Aty of the

1 distortion wave is approximately equal
] to g4, which coincides with the clas~
£, — sical result. For high frequencles
an asympbtotic sclution of Bguation

mnfes.ef R {5.13) gives two values for the wave
wiw,
g 7 7 7 P number .
g .. @ P w?
Fig. 1 &=, B =g (517

Hence we obtain two phase velocities for distortion waves g, and 4,.

From the foregolng we may conclude that the relation between the phase
veloclity of a distortlon wave and frequency must be of the form expressed
in Fig.l. This figure shows that for w < w, the phase velocity increases
with increase in w Al o, <minfes,2,] and decreases if o,> minfas,o.l-

This conclusion is at variasnce with the assertion of Mindlin [4] that the
phase veloclity of a distortion wave must increase under any condltions with

increase in wave frequency.
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